ON THE STABILITY OF STEADY ROTATION OF A RIGID BODY WITH A FIXED POINT

PMM VOL.29, N2, 1965, pp.380-386
A. ANCHEV
(Sofia, Bulgaria)
(Received December 29, 1963)

Steady rotations of a heavy rigid body with one fixed point, were first discussed by Mlodzeevskil [1] and Staude [2]. Sufficient conditions for their stability were given by Rumiantsev [3]. Beletskil [4] considered some cases of steady rotations and their stability in the Newtonian field. Apykhtin [5] found permanent axes of rotation when the equations of motion permit Goriachev's integrals.

In this paper, steady rotations of a rigid body with one fixed point and their stability in a potential field of force, are investigated.

1. Pormanant area of rotation. Let us assume a fixed point 0 belonging to the rigid body to be the origin of both, fixed coordinate system 0 on n and a moving coordinate system $0 x_{1} x_{a} x_{3}$, the latter being fixed relative to the rigid body and its axes coinciding with the principal axes of inertia of this body with respect to the origin 0 . Let A_{1}, A_{a}, A_{3} be the principal moments of inertia of the body with respect to the origin, and $Y_{1}, Y_{2}, \gamma_{3}-$ direction cosines of the axis of with respect to $x_{1}, x_{\rho_{1}} x_{3}$. We shail assume that the external forces permit the force function of the type

$$
\begin{equation*}
U=U\left(\gamma_{1}, \Upsilon_{2}, \Upsilon_{3}\right) \tag{1.1}
\end{equation*}
$$

which has continuous partial derivatives of the l-st order. Equations of motion in the moving reference frames are

$$
\begin{align*}
A_{i} \frac{d p_{i}}{d t} & =\left(A_{i+1}-A_{i+2}\right) p_{i+1} p_{i+2}+\gamma_{i+2} \frac{\partial U}{\partial \gamma_{i+1}}-\Upsilon_{i+1} \frac{\partial U}{\partial \Upsilon_{i+2}} \tag{1.2}\\
\frac{d \Upsilon_{i}}{d t} & =p_{i+2} \Upsilon_{i+1}-p_{i+1} \gamma_{i+2} \quad(i=1,2,3)
\end{align*}
$$

where p_{s} are the projections of the instantaneous angular velocity on the moving axes. The subscripts here should not exceed 3; this can be accomplished by taking the subscript modulus 3 , i.e. substracting 3 if they exceed 3 .

The syst n of differential equations (1.2) has the following first integrals:
$A_{1} p_{1}{ }^{2}+A_{2} p_{2}{ }^{2}+A_{3} p_{3}{ }^{2}-2 U\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)=$ const,
$A_{1} p_{1} \gamma_{1}+A_{2} p_{2} \gamma_{2}+A_{3} p_{3} \gamma_{3}=$ const,

If an axis of steady rotation exists, it will be stationary with respect to both, the body and a space around it. Let the direction cosines of this axis with reference to the moving frame be $l_{1}=$ const, $l_{2}=$ const, $l_{3}=$ const and w be a corresponding angular velocity. Then we have $p_{1}=\omega q_{1}$, and (1.2) become

$$
\begin{gather*}
A_{i} l_{i} \frac{d \omega}{d t}=\left(A_{i+1}-A_{i+2}\right) \omega^{2} l_{i+1} l_{i+2}+\Upsilon_{i+2} \frac{\partial U}{\partial \Upsilon_{i+1}}-\Upsilon_{i+1} \frac{\partial U}{\partial \Upsilon_{i+2}} \\
\frac{d \Upsilon_{i}}{d t}=\omega\left(l_{i+2} \Upsilon_{i+1}-l_{i+1} \Upsilon_{i+2}\right) \tag{1.4}
\end{gather*}
$$

First integrals of this system are

$$
\begin{align*}
& \omega^{2}\left(A_{1} l_{1}^{2}+A_{2} l_{2}{ }^{2}+A_{3} l_{3}^{2}\right)-2 U\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)=k_{1} \\
& \quad \omega\left(A_{1} l_{1} \gamma_{1}+A_{2} l_{2} \gamma_{2}+A_{3} l_{3} \Upsilon_{3}\right)=k_{2} \tag{1.5}\\
& l_{1} \gamma_{1}+l_{2} \gamma_{2}+l_{3} \gamma_{3}=k_{3}, \quad \quad \gamma_{1}{ }^{2}+\gamma_{2}{ }^{2}+\gamma_{3}{ }^{2}=1 \tag{1.6}
\end{align*}
$$

Eliminating ω from (1.5), we obtain

$$
\begin{equation*}
\left(A_{1} l_{1} \gamma_{1}+A_{2} l_{2} \gamma_{2}+A_{3} l_{3} \gamma_{3}\right)^{2}\left[k_{1}+2 U\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)\right]=k_{2}{ }^{2}\left(A_{1} l_{1}{ }^{2}+A_{2} l_{2}{ }^{2}+A_{3} l_{3}{ }^{2}\right) \tag{1.7}
\end{equation*}
$$

Equations (1.6) and (1.7) can be used to determine γ_{1}. It is easily seen that this method wili, in most cases, give constant values. Exceptions will occur when, e.g. some of the equations are found to have been derived from other equations not considered here. If γ_{1} is constant, then (1.4) gives

$$
\frac{\gamma_{1}}{l_{1}}=\frac{\gamma_{2}}{l_{2}}=\frac{\gamma_{3}}{l_{3}}
$$

Hence, 0 will be a permanent axis, and $\gamma_{1}{ }^{2}$. From (1.5) it follows that w is aiso constant. It remains to determine the position of the permanent axis within the body, i.e. to find the conditions which must be fulfilled by z_{1} in order for the corresponding axis directed along $O S$, to .be the axis of steady rotation. If

$$
\left(\frac{\partial U}{\partial \gamma_{i}}\right)_{\gamma_{1}=l_{1}, \gamma_{2}=l_{2}, \gamma_{i}=l_{3}}=L_{i} \quad(i=1,2,3)
$$

then (1.4) for $\omega=$ const gives

$$
\begin{equation*}
\left(A_{i+1}-A_{i+2}\right) \omega^{2} l_{i+1} l_{i+2}+l_{i+2} L_{i+1}-l_{i+1} L_{i+2}=0 \tag{1.8}
\end{equation*}
$$

which, after multiplying L_{1} and rearranging , becomes

$$
\begin{equation*}
L_{1}\left(A_{2}-A_{3}\right) l_{2} l_{3}+L_{2}\left(A_{3}-A_{1}\right) l_{3} l_{1}+L_{3}\left(A_{1}-A_{2}\right) l_{1} l_{2}=0 \tag{1.9}
\end{equation*}
$$

Direction cosines should also, apart from (1.9), satisfy

$$
\begin{equation*}
l_{1}{ }^{2}+l_{2}{ }^{2}+l_{3}{ }^{2}=\mathbf{1} \tag{1.10}
\end{equation*}
$$

Since (1.9) and (1.10) possess no unique solution, there exists a number of axes satisfying the above equations. In terms of present coordinates b point $S\left(l_{1}, z_{2}, z_{3}\right)$ should lie on both, the surface (1.9) and the phere (1.10), hence its geometrical locus is the intersection of (1.9) and (1.10). If the fleld is homogeneous

$$
U=-m g\left(x_{0} \gamma_{1}+y_{0} \gamma_{2}+z_{0} \gamma_{3}\right)
$$

or Newtonian

$$
U=-\alpha\left(x_{0} \gamma_{1}+y_{0} \Upsilon_{2}+z_{0} \gamma_{3}\right)-\beta\left(A_{1} \gamma_{1}^{2}+A_{2} \gamma_{2}^{2}+A_{3} \Upsilon_{3}^{2}\right)
$$

the surface (1.9) will be a staude cone [2]

$$
x_{0}\left(A_{2}-A_{3}\right) l_{2} l_{3}+y_{0}\left(A_{3}-A_{1}\right) l_{3} l_{1}+z_{0}\left(A_{1}-A_{2}\right) l_{1} l_{2}=0
$$

where x_{0}, y_{0}, z_{0} are the coordinates of the center of gravity of the body.
The sphere (1.10) and the surface (1.9) have common points $S_{1}(\pm 1,0,0)$, $S_{2}(0, \pm 1,0), S_{3}(0,0, \pm 1)$. These correspond to principal axes of inertia, provided the values of $L_{\text {d }}$ are finite. Subscript f assumes the values 1, 2, 3 , provided this value is dirferent from that of t corresponding to the axis under consideration. (1.9) is also satisfied by the point $S_{4}\left(L_{1}^{1}, L_{2}{ }^{1}, l_{3}^{1{ }^{1}}\right)$ of the sphere for which the normal $n\left(L_{1}{ }^{\prime}, L_{2}{ }^{\prime}, L_{3}{ }^{\prime}\right)$ to the equipotential surface and the radius-vector $0 S_{4}$ are colinear, $1 . e$. for which
$L_{1}{ }^{\prime} / l_{1}=L_{2}^{\prime} / l_{2}=L_{3}^{\prime} / l_{3}$. It can easily be verified that

$$
\begin{equation*}
S_{6}\left(\frac{L_{1}}{A_{1} N}, \frac{L_{2}}{A_{2} N}, \frac{L_{3}}{A_{3} N}\right), \quad N= \pm\left(\frac{L_{1}^{2}}{A_{1}^{2}}+\frac{L_{2}^{2}}{A_{2}^{2}}+\frac{L_{3}^{2}}{A_{3}^{2}}\right)^{1 / 2} \tag{1.11}
\end{equation*}
$$

also satisfies (1.9). Moreover, any point $S_{0}\left(l_{1}{ }^{0}, l_{2}{ }^{0}, l_{3}{ }^{0}\right)$, on the sphere which is a neutral point of the field, 1.e. $L_{1}{ }^{\circ}=0$, satisfies (1.9).

For every point S on the spherical curve obtained by the intersection of (1.9) and (1.10), there exists a corresponding semiaxis oS, which may become an axis of steady rotation. For this, its direction cosines must be such, that (1.8) gives a positive value for ω^{2}, i.e.

$$
\begin{equation*}
\omega^{2}=\frac{1}{A_{2}-A_{3}}\left(\frac{L_{3}}{l_{3}}-\frac{L_{2}}{l_{2}}\right)=\frac{1}{A_{3}-A_{1}}\left(\frac{L_{1}}{l_{1}}-\frac{L_{3}}{l_{3}}\right)=\frac{1}{A_{1}-A_{2}}\left(\frac{L_{2}}{l_{2}}-\frac{L_{1}}{l_{1}}\right) \geqslant 0 \tag{1.12}
\end{equation*}
$$

For the points S_{1}, S_{2}, S_{3} we have $\omega^{2}=\infty$, hence, the principal axes of inertia cannot, in general, be the permanent axes. For S_{4} and S_{0} we have $\omega=0$, and the body is in equilibrium.
 an axis of steady rotation with arbitrary angular velocity. When any of the principal axes of inertia 1 s , at the same time, the axis of steady rotation, then the force function is found to possess the following partial derivative: $\partial U / \partial \gamma_{i}=\gamma_{i} f_{i}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(i=1,2,3)$.

For S_{s}, (1.12) gives

$$
\omega^{2}=\mp\left(\frac{L_{1}{ }^{2}}{A_{1}^{2}}+\frac{L_{2}{ }^{2}}{A_{2}^{2}}+\frac{L_{3}{ }^{2}}{A_{3}^{2}}\right)^{1 / 2}
$$

hence steady rotation is possible only for the semiaxes passing through S_{5} and corresponding to the minus sign in (1.11).
2. Partioular oases. (a) Let the ellipsoid of inertia be an ellipsoid of revolution and let us suppose that $A_{1}=A_{3} \neq A_{3}$. Then the relations (1.8) and (1.9) will become

$$
\begin{gather*}
\left(A_{1}-A_{3}\right) \omega^{2} l_{2} l_{3}+l_{3} L_{2}-l_{2} L_{3}=0, \quad-\left(A_{1}-A_{3}\right) \omega^{2} l_{3} l_{1}+l_{1} L_{3}-l_{3} L_{1}=0 \\
l_{2} L_{1}-l_{1} L_{2}=0 \tag{2.1}\\
l_{3}\left(l_{2} L_{1}-l_{1} L_{2}\right)=0 \tag{2.2}
\end{gather*}
$$

From (2.2) we see that the surface (1.9) consists of a plane

$$
\begin{gather*}
l_{3}=0 \tag{2.3}\\
l_{2} L_{1}-l_{1} L_{2}=0 \tag{2.4}
\end{gather*}
$$

and a surface
a_{1}) The case $l_{3}=0$. From (2.1) we see that every axis ($l_{1}, l_{2}, 0$) on the piane (2.3) satisfying (2.4), will be the axis of steady rotation with arbitrary angular velocity, if $L_{\mathrm{a}}=0$. The condition (2.4) for the principal axis x_{1} will be satisfied if $L_{2}=0$, and for x_{2}, if $L_{1}=0$.
a_{2}) The case $r_{3} \neq 0$. Here, the possible axes of steady rotation and the corresponding angular velocity, satisfy the condition

$$
\begin{equation*}
\omega^{2}=\frac{1}{A_{1}-A_{3}}\left(\frac{L_{3}}{l_{3}}-\frac{L_{1}}{l_{1}}\right)=\frac{1}{A_{1}-A_{3}}\left(\frac{L_{3}}{l_{3}}-\frac{L_{2}}{l_{2}}\right) \geqslant 0 \tag{2.5}
\end{equation*}
$$

From (2.1) we see that if $L_{1}=L_{2}=0$, then the principal axis of inertia x_{3} is also the axis of steady rotation with arbitrary angular velocity.
b) If the inertia ellipsoid is a sphere, i.e. $A_{1}=A_{2}=A_{3}$, then from (1.8) it follows that the only axes of steady rotation will be those, corresponding to the normals to the equipotential surface or to its neutral points.
c) Ellipsoid or inertia is not the ellipsoid of revolution, but the force function is of the type $U=U\left(\gamma_{1}, \gamma_{2}\right)$. Assuming $L_{3}=0$, Equations (1.8) and (1.9) become

$$
\begin{equation*}
l_{3}\left[\left(A_{2}-A_{3}\right) \omega^{2} l_{2}+L_{2}\right]=0, \quad l_{3}\left[\left(A_{3}-A_{1}\right) \omega^{2} l_{1}-I_{1}\right]=0 \tag{2.6}
\end{equation*}
$$

$\left(A_{1}-A_{2}\right) \omega^{2} l_{1} l_{2}+l_{\mathrm{s}} L_{1}-l_{1} L_{2}=0, \quad l_{3}\left[L_{1}\left(A_{2}-A_{3}\right) l_{2}+L_{2}\left(A_{3}-A_{1}\right) l_{1}\right]=0$
In this case the surface (1.9) separates into the plane (2.3) and the surface

$$
\begin{equation*}
L_{1}\left(A_{2}-A_{3}\right) l_{2}+L_{2}\left(A_{3}-A_{1}\right) l_{1}=0 \tag{2.8}
\end{equation*}
$$

c) The case $z_{3}=0$. From (2.6) it follows that the possible axes of steady rotation and the corresponding angular velocity are subject to the condition

$$
\begin{equation*}
\omega^{2}=\frac{1}{A_{1}-A_{2}}\left(\frac{L_{2}}{l_{2}}-\frac{L_{1}}{l_{1}}\right) \geqslant 0 \tag{2.9}
\end{equation*}
$$

The principal axis of inertia $x_{1}\left(x_{2}\right)$ will also be the axis of steady rotation with arbitrary angular velocity if $L_{2}=0\left(L_{1}=0\right)$.
c_{2}) The case $z_{3} \neq 0$. The axis of steady rotation should satisfy (2.8) Possible axes of steady rotation and the corresponding angular velocity are found from

$$
\begin{equation*}
\omega^{2}=\frac{1}{A_{3}-A_{1}} \frac{L_{1}}{l_{1}}=-\frac{1}{A_{2}-A_{3}} \frac{L_{2}}{l_{2}}=\frac{1}{A_{1}-A_{2}}\left(\frac{L_{2}}{l_{2}}-\frac{L_{1}}{l_{1}}\right) \geqslant 0 \tag{2.10}
\end{equation*}
$$

Principal axis of inertia x_{3} is an axis of steady rotation with arbitrary angular velocity if $L_{1}=L_{2}=0$, $1 . e$. if it corresponds to the neutral point of the function $U\left(\gamma_{1}, \gamma_{2}\right)$.

$$
\begin{gather*}
\text { Let } U=U\left(\gamma_{1}\right) \text {. Since in this case } L_{2}=L_{3}=0,(1.8) \text { gives } \\
\left(A_{2}-A_{3}\right) \omega^{2} l_{2} l_{3}=0, \quad l_{3}\left[\left(A_{3}-A_{1}\right) \omega^{2} l_{1}-L_{1}\right]=0 \\
l_{2}\left[\left(A_{1}-A_{2}\right) \omega^{2} l_{1}+L_{1}\right]=0 \tag{2.11}
\end{gather*}
$$

d_{1}) The case $l_{2} \neq l_{3}=0 .$, Axis x_{1} is an axis of steady rotation with arbitrary angular velocity.
d_{2}) The case $l_{2}=0, \quad l_{3} \neq 0$. Possible axes of steady rotation and the corresponding anguiar velocity satisfy

$$
\omega^{2}=\frac{L_{1}}{l_{1}\left(A_{3}-A_{1}\right)} \geqslant 0
$$

x_{3} will be an axis of steady rotation with arbitrary angular velocity if $L_{1}=0$, i.e. when it corresponds to the neutral point of the force function.
d_{3}) The case $l_{2} \neq 0, l_{3} \neq 0$. If $A_{2} \neq A_{3}$, then the equilibrium is possible only when $L_{1}=0$. If $A_{2}=A_{3}$, then the possible axes of steady rotation and corresponding angular velocity can be determined from

$$
\omega^{2}=\frac{L_{1}}{l_{1}\left(A_{2}-A_{1}\right)} \geqslant 0
$$

If $l_{1}=0$ is a neutral point of the force function ($L_{1}=0$) and $A_{B}=A_{3}$ then steady rotations about any of the axes $\left(0, l_{2}, i_{3}\right)$, occur with an arbitrary angular velocity.
3. Stability of ateady rotations. Let

$$
\begin{equation*}
p_{i}=\omega l_{i}, \quad \Upsilon_{i}=l_{i}=\mathrm{const}, \quad(i=1,2,3), \quad \omega=\text { const } \tag{3.1}
\end{equation*}
$$

be the boundary conditions for the particular solution of equations of motion (1.2), corresponding to the steady rotation of a rigid body. We shall assumi that the motion (3.1) is smooth and shall investigate its stability. Substituting

$$
\begin{equation*}
p_{\imath}=\omega l_{i}+\xi_{i}, \quad \gamma_{i}=l_{i}+\eta_{i}, \quad(i=1,2,3) \tag{3.2}
\end{equation*}
$$

in (1.2) gives us equations of perturbed motion, whose first integrals are

$$
\begin{gather*}
V_{1}=A_{1} \xi_{1}^{2}+A_{2} \xi_{2}^{2}+A_{3} \xi_{3}^{2}+2 \omega\left(A_{1} l_{1} \xi_{1}+A_{2} l_{2} \xi_{2}+A_{3} l_{3} \xi_{3}\right)- \\
-2 U\left(l_{1}+\eta_{1}, l_{2}+\eta_{2}, l_{3}+\eta_{3}\right)=\text { const } \tag{3.3}\\
\begin{array}{c}
V_{2}=A_{1} \xi_{1} \eta_{1}+A_{2} \xi_{2} \eta_{2}+A_{3} \xi_{3} \eta_{3}+\omega\left(A_{1} l_{1} \eta_{1}+A_{2} l_{2} \eta_{2}+A_{3} l_{3} \eta_{3}\right)+ \\
\\
+A_{1} l_{1} \xi_{1}+A_{2} l_{2} \xi_{2}+A_{3} l_{3} \xi_{3}=\mathrm{const} \\
V_{3}=\eta_{1}^{2}+\eta_{2}^{2}+\eta_{3}^{2}+2\left(l_{1} \eta_{1}+l_{2} \eta_{2}+l_{3} \eta_{3}\right)=0
\end{array}
\end{gather*}
$$

Expanding $U\left(l_{1}+\eta_{1}, l_{2}+\eta_{2}, l_{3}+\eta_{3}\right)$ in powers of η_{i}, we obtain
where

$$
\begin{gathered}
V_{1}=\sum_{i=1}^{3} A_{i} \xi_{i}^{2}+2 \omega \sum_{i=1}^{3} A_{i} L_{i} \xi_{i}-2 \sum_{i=1}^{3} L_{i} \eta_{i}-\sum_{\substack{i=1 \\
j=1}}^{3} L_{i j} \eta_{i} \eta_{j}+\varphi\left(\eta_{1}, \eta_{2}, \eta_{3}\right) \\
L_{i j}=\left(\frac{\partial^{2} U}{\partial \gamma_{i} \partial \gamma_{j}}\right)_{\gamma_{1}=l_{1}, \quad \gamma_{2}=l_{2}, \quad \gamma_{3}=l_{3}}
\end{gathered}
$$

and $\varphi\left(\eta_{1}, \eta_{2}, \eta_{3}\right)$ is a function containing these terms of the expansion, in which the power of η_{1} is geater than two.

The method of Chetaev [6] is used here to construct the Liapunov function, which is

$$
\begin{gather*}
V=V_{1}-2 \omega V_{2}+\lambda V_{3}+1 l_{4} \mu V_{3}^{2}=A_{1} \xi_{1}^{2}+A_{2} \xi_{2}^{2}+A_{3} \xi_{3}^{2}+\left(\lambda+\mu l_{1}^{2}-L_{11}\right) \eta_{1}^{2}+ \\
+\left(\lambda+\mu l_{2}^{2}-L_{22}\right) \eta_{2}^{2}+\left(\lambda+\mu l_{3}^{2}-L_{33}\right) \eta_{3}^{2}-2 \omega\left(A_{1} \xi_{1} \eta_{1}+A_{2} \xi_{2} \eta_{2}+A_{3} \xi_{3} \eta_{3}\right)+ \\
+2\left[\left(\mu l_{1} l_{2}-L_{12}\right) \eta_{1} \eta_{2}+\left(\mu l_{1} l_{3}-L_{13}\right) \eta_{1} \eta_{3}+\left(\mu l_{2} l_{3}-L_{23}\right) \eta_{2} \eta_{3}\right]+ \\
+\dot{f}\left(\eta_{1}, \eta_{2}, \eta_{3}\right)=\mathrm{const} \tag{3.4}
\end{gather*}
$$

λ here is based on (1.8), and is

$$
\begin{equation*}
\lambda=A_{1} \omega^{2}+\frac{L_{1}}{l_{1}}=A_{2} \omega^{2}+\frac{L_{2}}{l_{2}}=A_{3} \omega^{2}+\frac{L_{3}}{l_{3}} \tag{3.5}
\end{equation*}
$$

where μ is an arbitrary constant, and $f\left(\eta_{t}, \eta_{z}, \eta_{s}\right)$ contains η_{1} only in powers greater than two.

The function V will be a positive-definite function of variables $\varepsilon_{1}, \eta_{1}$ if the quadratic part of V, i.e. the quadratic form $W=V-f\left(\eta_{1}, \eta_{2}, \eta_{3}\right)$. is positive-definite. By the sylvester criterion, W and consequentiy V will be positive-definite if and cnly if

$$
\begin{align*}
& m_{1}-A_{1} \omega^{2}>0, \quad\left|\begin{array}{cc}
m_{1}-A_{1} \omega^{2} & k_{12} \\
k_{12} & m_{2}-A_{2} \omega^{2}
\end{array}\right|>0 \tag{3.6}\\
& \left|\begin{array}{lcc}
m_{1}-A_{1} \omega^{2} & k_{12} & k_{13} \\
k_{12} & m_{2}-A_{2} \omega^{2} & k_{23} \\
k_{13} & k_{23} & m_{3}-A_{3} \omega^{2}
\end{array}\right|>0 \tag{3.7}
\end{align*}
$$

where

$$
\begin{equation*}
m_{i}=\lambda+\mu l_{i}^{2}-L_{i i}, \quad k_{i, i+1}=\mu l_{i} l_{i+1}-L_{i, i+1} \tag{3.8}
\end{equation*}
$$

With the conditions (3.6) and (3.7) satisfied, function V will be a igign-definite integral of the equations of perturbed motion and, by Liapunov's theorem on stability, nonperturbed motion (3.1) corresponding to steady rotations of a rigid body, will also be stable with respect to the variables p_{1}, γ_{1}.

If the axis of steady rotation passes through the neutral point $S_{0}\left(l_{1}^{\circ}, l_{2}^{\circ}, l_{3}^{\circ}\right)$ of the force function, $1 . e . L_{1}=0$, then as it was shown before, $\omega=0$, and the body is in equilibrium. When $\mu=0$, (3.7) gives us sufficient conditions of stability, which are

$$
-L_{11}>0, \quad\left|\begin{array}{ll}
L_{11} & L_{12} \tag{3.9}\\
L_{12} & L_{22}
\end{array}\right|>0, \quad-\left|\begin{array}{lll}
L_{11} & L_{12} & L_{13} \\
L_{12} & L_{22} & L_{23} \\
L_{13} & L_{23} & L_{33}
\end{array}\right|>0
$$

The above inequalities represent sufficient conditions for the force
function to have a maximum at S_{0}, i.e. they coincide with the sufficient conditions of stability according to the Lagrange (Legendre-Dirichlet) criterion.

If the force function U is such that $L_{H}=0(t \neq j)$, then the sufficient conditions for stability of the steady rotations are obtained from (3.6), and are

$$
\begin{gather*}
\mu l_{1}^{2}+\frac{L_{1}}{l_{1}}-L_{11}>0 \tag{3.10}\\
\mu\left[\left(\frac{L_{2}}{l_{2}}-L_{22}\right) l_{1}^{2}+\left(\frac{L_{1}}{l_{1}}-L_{11}\right) l_{2}^{2}\right]+\left(\frac{L_{1}}{l_{1}}-L_{11}\right)\left(\frac{L_{2}}{l_{2}}-L_{22}\right)>0 \\
\mu\left[\left(\frac{L_{2}}{l_{2}}-L_{22}\right)\left(\frac{L_{3}}{l_{3}}-L_{33}\right) l_{1}^{2}+\left(\frac{L_{1}}{l_{1}}-L_{11}\right)\left(\frac{L_{3}}{l_{3}}-L_{33}\right) l_{2}^{2}+\right. \\
\left.+\left(\frac{L_{1}}{l_{1}}-L_{11}\right) \times\left(\frac{L_{2}}{l_{2}}-L_{22}\right) l_{3}^{2}\right]+\left(\frac{L_{1}}{l_{1}}-L_{11}\right)\left(\frac{L_{2}}{l_{2}}-L_{22}\right)\left(\frac{L_{3}}{l_{3}}-L_{33}\right)>0
\end{gather*}
$$

If, for example, we have a homogeneous field of force

$$
U=-P\left(x_{0} r_{1}+y_{0} \tau_{2}+z_{0} \tau_{3}\right)
$$

where P is the weight of the body and $x_{0} y_{0} z_{0}$ are the coordinates of its center of gravity, then (3.10) gives us well known conditions due to Rumiantsev, on the stability of steady rotation of a heavy rigid body with one fixed point [3].

Apykhtin [5] investigated the problem of steady rotation of a rigid body with a fixed point for the case of Goriachev, namely $A_{1}=A_{2}=2 A_{3}$ with the force function

$$
U=A_{1}\left[a(n-1)^{-1} \Upsilon_{3}^{1-n}+1 / 2 b\left(\gamma_{2}^{2}-\Upsilon_{1}^{2}\right)-c_{1} \Upsilon_{1}-c_{2} \gamma_{2}\right]
$$

where a, b, o_{1}, c_{2} are constants and n is a positive integral number. For the case

$$
\begin{array}{ll}
L_{1}=-A_{1}\left(c_{1}+b l_{1}\right), & L_{11}=-A_{1} b \\
L_{2}=-A_{1}\left(c_{2}-b l_{2}\right), & L_{22}=A_{1} b \\
L_{3}=-A_{1} a l_{3}^{-n}, & L_{33}=A_{1} n a l_{3}^{-n-1}
\end{array} \quad L_{i j}=0 \quad(i \neq j)
$$

sufficient conditions (3.10), give, e.g. for $\mu=0$, the inequalities

$$
-\frac{c_{1}}{l_{1}}>0, \quad-\frac{c_{2}}{l_{2}}>0, \quad-\frac{a}{l_{3}^{n+1}}>0
$$

4. stability of ateady rotationa about the prinoipal exes of inartia. We shall assume that the force function satisfies the condition $L_{i j}=0(i \neq j)$. If the force function has a neurral point corresponding to any of the principal axes of inertia, then this axis will be the axis of steady rotation with arbitrary angular velocity. Let for example $S_{1}(1,0,0)$ be a neutral point. In order to investigate the stiability of steady rotation about the axis x, we shall construct, a Liapunov function in the form of (3.4), and substitute into it $l_{1}=1, l_{2}=l_{2}=0$ and $\lambda=A_{1} \omega^{2}$. (3.6) are the conditions of sign-definiteness of this function, hence they are also the sufficient sonditions of its stability, and can easily be reduced to

$$
\begin{equation*}
\mu-L_{21}>0, \quad\left(A_{1}-A_{2}\right) \omega^{2}-L_{22}>0, \quad\left(A_{1}-A_{2}\right) \omega^{2}-L_{33}>0 \tag{4.1}
\end{equation*}
$$

a) Let $S_{1}(1,0,0)$ correspond to the maximum of the force function, 1.e. $L_{11}<0(t=1,2,3)$. If $\mu=0$, then from (4.1) we have: a_{1}) The case $A_{1}>A_{2} \geqslant A_{3}$, when the motion is stable for any angular velocity, i.e. steady rotations about the principal axis of inertia corresponding to the maximum moment of inertia, are stable for any angular velocity.
a_{9}) The case $A_{9}>A_{1}>A_{3}$. From (4.1) we see that the surficient condition of stability is the inequality

$$
\begin{equation*}
\omega^{2}<\frac{-L_{22}}{A_{2}-A_{1}} \tag{4.2}
\end{equation*}
$$

a_{3}) The case $A_{1}<A_{2} \leqslant A_{3}$. From (4.1) it follows that the sufficient conditions of stability are the inequalities

$$
\begin{equation*}
\omega^{2}<\frac{-L_{22}}{A_{2}-A_{1}}, \quad \omega^{2}<\frac{-L_{33}}{A_{3}-A_{1}} \tag{4.3}
\end{equation*}
$$

b) Let $S_{1}(1,0,0)$ correspond to the minimum of the force function, i.e. $L_{14}>0$. Choosing $\mu>L_{41}$ we see that the conditions (4.1) are satisfled only when x_{1} is the axis of the largest moment of inertia $A_{1}>A_{2} \geqslant A_{3}$ and when at the same time,

$$
\begin{equation*}
\omega^{2}>\frac{L_{22}}{A_{1}-A_{2}}, \quad \omega^{2}>\frac{L_{33}}{A_{1}-A_{3}} \tag{4.4}
\end{equation*}
$$

c) Let the neutral point $S_{1}(1,0,0)$ correspond to netther the maximum nor the minimum of the force function. If $L_{11} \geqslant 0, L_{22}<0, L_{33}<0$, then the results are equal to those of (a), while if $L_{11} \leqslant 0, L_{22}>0$ and $L_{33}>0$ the results are equal to those of (b). If $L_{22}>0, L_{33}<0$ and L_{11} is arbitrary, then for $A_{1}>A_{2} \geqslant A_{3}$, sufficient condition of stability easily deduced from (4.1), is the inequality

$$
\begin{equation*}
\omega^{2}>\frac{L_{22}}{A_{1}-A_{2}} \tag{4.5}
\end{equation*}
$$

while for $A_{3}>A_{1}>A_{2}$, the inequalities

$$
\begin{equation*}
\frac{L_{22}}{A_{1}-A_{2}}<\omega^{2}<\frac{-L_{33}}{A_{3}-\sqrt[A_{1}]{ }} \tag{4.6}
\end{equation*}
$$

When $A_{2}>A_{1}>A_{3}$, then the second of the (4.1) inequalities cannot be satisfied.

The axis $x_{1}(1,0,0)$ will also be the axis of steady rotation with arbi= trary angular velocity in case, when x_{1} is normal to the equipotential surface, i.e. when $L_{1} \neq 0, L_{2}=L_{3}=0$. To investigate the stability of steady rotation in this case, we shall construct a Liapunov function in form of (3.4), in which $l_{1}=1, l_{2}=l_{3}=0, \lambda=A_{1} \omega^{2}+L_{1}$. This function will be positive-definite in iccordance ith (3.6), if

$$
\begin{gather*}
\mu+L_{1}-L_{11}>0, \quad\left(A_{1}-A_{2}\right) \omega^{2}+L_{1}-L_{22}>0 \\
\left(A_{1}-A_{3}\right) \omega^{2}+L_{1}-L_{33}>0 \tag{4.7}
\end{gather*}
$$

which are the sufficient conditions of stability of steady rotations in this case, are fulfilled.

As an example of the use of (4.7), we shall investigate the conditions of stability of steady rotations when the force function is of the type

$$
\begin{equation*}
U=-a\left(A_{1} \gamma_{1}^{2}+A_{2} \tau_{2}^{2}+A_{3} \Upsilon_{3}^{2}\right) \tag{4.8}
\end{equation*}
$$

where $\alpha>0$ is a constant. Apykhtin proved that if $w^{2} \neq 2 \alpha$ and the inertia ellipsoid is not spherical, then the principal axes of inertia are the only permanent axes. When the force function 18 of the type (4.8), then sufficient conditions of stability of steady rotation about the axis $x_{1}(1,0,0)$ are, by (4.7), the inequalities

$$
\begin{equation*}
\mu>0, \quad\left(A_{1}-A_{2}\right)\left(\omega^{2}-2 a\right)>0, \quad\left(A_{1}-A_{3}\right)\left(\omega^{2}-2 \alpha\right)>0 \tag{4.9}
\end{equation*}
$$

from which it can be seen that if the axis x_{j} is the axis of the maximum moment of inertia when $A_{1}>A_{2} \geqslant A_{3}$, then the inequality

$$
\begin{equation*}
\omega^{2}>2 \alpha \tag{4.10}
\end{equation*}
$$

is sufficient a condition of stability, while if x_{1} is the axis of the minimum moment of inertia, then the sufficient condition is

$$
\begin{equation*}
\omega^{2}<2 \alpha \tag{4.11}
\end{equation*}
$$

BIBLIOGRAPHY

1. Mlodzeevski1, B.K., O permanentnykh osiakh v dvizhenii tverdogo tela okolo nepodvizhnoi tochki (Om permanent axes in the motion of a rigid body about a fixed point). Trudy Otd.fiz.Nauk Obshch.Lyub.Estestvoz. Vol.7, 1894.
2. Staude, 0., Über permanente Rotationsachsen bei der Bewegung eines schweren Körpers um einen festen Punkt. J.reine angew.Math., B.113, 1894.
3. Rumiantsev, V.V., Ustoichivost' permanentnykh vrashchenil tiazhelogo tverdogo tela (Stability of steady rotations of a heavy rigid body). PMK Vol. 20, № 1, 1956.
4. Beletski1, V.V., Nekotorye voprosy dvizhenila tverdogo tela v n'iutonovskom pole sil (Some aspects of the motion of a rigid body in a Newtonian force field). PMN Vol.21, № 6, 1957.
5. Apykhtin, N.G., O permanentnykh osiakh vrashchenila tverdogo tela s zakreplennoi tochkoi v sluchae sushchestvovanila integralov D.N. Goriacheva (Permanent axes of rotation of a rigid body with a fixed point when the integrals of D.N.Goriachev exist). PMM Vol. 27, NO 5, 1963.
6. Chetaev, N.G., Ustoichivost' dvizhenila (Stability of Motion). Gostekhteoretizdat, 1955.
7. Pozharitskil, G.K., Ob ustoichivosti permanentntkh vrashchenil tverdogo tela s zakreplenno1 tochkoi, nakhodiashchegosia v n'iutonovskom tsentral 'nom pole sil (on the stability of permanent rotations of a rigid body with a fixed point under the action of a Newtonian central force field). $F M M$ Vol. 23, № 4, 1959.
